
UNIVERSITAT POLITÈCNICA DE
CATALUNYA

FACULTAT D’INFORMÀTICA DE BARCELONA

BWave
Joint Project - Big Data Management Part 2

Spring 2022

Authors:
ABUSALEH, Ali G. A, email: ali.g.a.abusaleh@estudiantat.upc.edu
Lorencio Abril, Jose Antonio, email: jose.antonio.lorencio@estudiantat.upc.edu
Mayorga Llano, Mariana, email: mariana.mayorga@estudiantat.upc.edu

Professors: Alberto Abelló, Sergi Nadal

mailto:ali.g.a.abusaleh@estudiantat.upc.edu
mailto:jose.antonio.lorencio@estudiantat.upc.edu
mailto:mariana.mayorga@estudiantat.upc.edu


BWave - Joint Project CONTENTS

Contents
1 Introduction 2

2 Formatted Zone 3

3 Exploitation Zone 3

4 Analytical Zone: Recommender System 4

5 Streaming 5
5.1 Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.2 Top 3 elements per Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 References 7

A Running example 9

1



BWave - Joint Project

1 Introduction
In the rapidly evolving digital landscape, social networks have become indispensable platforms
for connecting individuals and facilitating communication. BWave endeavors to elevate user
interaction by developing a unique social network that revolves around a conversational chat-
bot. This chatbot is meticulously designed to comprehend user interests, enabling the system
to provide tailored recommendations of other users with shared interests for exploration and
engagement.

Our initial prototype involved the creation of a Django application that allowed users to reg-
ister and log in manually or with their Facebook credentials. Conversations, posts, and their
corresponding analyses were stored in MongoDB, serving as a repository for both Facebook
posts and chatbot conversations. NLP analysis, powered by openAI, was employed to extract
pertinent features from the stored data, which were then formatted and stored as JSON files in
a separate MongoDB collection. Although the JSON format exhibited a semi-structured nature
and a common context focused on users’ interests, it still presented slight variations in data
structure across different inputs.

To augment our implementation, we incorporated additional tools to enhance the system’s ef-
ficiency and responsiveness. Celery, a task queue system, was leveraged to execute tasks asyn-
chronously, ensuring optimal performance and preventing potential bottlenecks in user expe-
rience. Redis channels, on the other hand, were utilized to facilitate real-time communication
between users and the chatbot, laying the groundwork for future extensions that would enable
user-to-user interaction.

For this second phase of implementation, we introduced a Formatted Zone to filter the outputs
from the Semi-Formatted Landing, we integrated the Exploitation Zone as a property graph
database in Neo4J and developed two distinct approaches for the recommender system, one
based on Jaccard similarity coefficient and the second one with an embedding-based technique,
to offer users personalized recommendations based on their interests. Finally, streaming was
incorporated to identify the trending topics of each category.

Figure 1: BWave Architecture

Note: Please use the following Github account to access the project if needed
Username: ”bwave23”, Password: ”upcjointproject”.

2



BWave - Joint Project

2 Formatted Zone
In BWave’s architecture, the formatted zone serves as an intermediate stage between the Land-
ing Zone and the Exploitation Zone. In the Semi-Formatted Landing we can find the interpreted
interests from our users’ conversations stored in a JSON format. However, the structure of the
JSON data provided by OpenAI’s NLP analysis is not consistent, requiring the implementation
of a data formatter to filter and validate only the JSON objects that adhere to the prede-
fined structure with the objective of ensuring data quality and consistency before entering the
Exploitation Zone.

The validated JSONS are then stored in collections with the defined schema validation. Schema
validation in MongoDB provides a robust mechanism to define and enforce data integrity rules
which allowed BWave to specify the expected structure, data types, and required fields for stored
data. This validation process ensures that data inserted into the database meets the defined
criteria, promoting data quality and consistency and reducing the risk of inconsistencies.

The current implementation focuses on validating specific data focused on Movies, Music and
Food stored in a specific structure in the formatted zone to prioritize data quality for the
exploitation zone for current recommendations. This implies limited Flexibility to handle less
structured or unstructured data. However, future implementations could incorporate data less
structured and more varied in order to make recommendations on broader topics and to allow
for increased flexibility and accommodate a wider range of data formats.

Schema validation within the database can introduce performance overhead, especially when
dealing with complex schemas and large volumes of data. However, in our current implementa-
tion, the simplicity of the schemas used outweighs the potential drawbacks. Since our system
primarily focuses on graph maintenance rather than real-time or high-throughput processing, the
advantages of schema validation are more prominent. Additionally, by validating data directly
within MongoDB, we minimize data transfer between the database and external components,
leading to improved processing efficiency and reduced latency. This approach ensures that the
data is consistent, conforms to the expected structure, and enhances the overall reliability and
performance of the system.

Automated data pipelines were implemented with Apache Airflow to extract the data from
the Landing Zone and load the validated data into the Formatted Zone incrementally. It was
additionally implemented between the Formatted Zone and the Exploitation Zone in Neo4J.
This automation eliminates manual intervention and reduces the risk of human errors, ensuring
consistent and accurate data preparation. This data transfer is scheduled to be executed daily,
ensuring that the graph database stays up to date with the latest validated data. This seamless
data transfer ensures the availability of real-time insights and recommendations within our social
networking platform.

3 Exploitation Zone
The Exploitation Zone plays a critical role in our social network project, as it enables the
utilization of data for running recommender systems and conducting various analyses. Once the
data is validated and stored in the Formatted Zone, it is moved to Neo4J through Spark, where
it will be incorporated into a graph, which will be further used by the Analytical Zone to run
the recommender systems.

Firstly, the choice to adopt a property graph model in Neo4j for the Exploitation Zone is

3



BWave - Joint Project

based on the inherent nature of social networks and the relationships present within the data.
Property graphs provide a natural and efficient way to capture and model connections between
users, locations, and interests, among other elements. By leveraging this model, we can uncover
valuable insights about social interactions, communities, and user preferences.

Furthermore, the property graph’s ability to facilitate fast and intuitive traversal of relation-
ships offers a powerful foundation for developing recommendation systems in social networks.
The graph structure allows us to incorporate multiple factors, including user preferences, social
connections, shared interests, and past behaviors, resulting in more accurate and personalized
recommendations. Leveraging Neo4j’s graph algorithms and querying capabilities, we can imple-
ment sophisticated recommendation algorithms that enhance user engagement, enable content
discovery, and foster meaningful interactions within our social network. Additionally, Neo4j’s
graph algorithms could allow us to perform other relationship-centric analyses for further im-
plementations, such as identifying influencers, detecting social communities, or finding common
friends, expanding the analytical capabilities of our platform.

Considering the anticipated growth of our social network and the associated increase in data
volume, scalability becomes a crucial aspect. Graph databases, like Neo4j, are capable to handle
large-scale graphs efficiently. Neo4j’s index-free adjacency ensures fast data processing, allowing
for real-time analytics and responsiveness, even with a significant influx of users, posts, and
relationships. This scalability ensures that our platform can accommodate a growing user base
while delivering the performance and user experience expected from a social networking platform.

Moreover, the choice of a property graph design provides the flexibility necessary to adapt to
changing data structures without requiring extensive schema modifications. As our project
evolves and new types of relationships, interests, or attributes emerge, we can seamlessly incor-
porate them into our data model. This flexibility ensures that our platform remains relevant
and up-to-date, enabling us to keep pace with emerging trends, user interactions, and evolving
user preferences. While managing data modeling complexity to ensure data consistency and
integrity within a flexible graph structure is a challenge, we have addressed this concern in the
earlier stages of data processing in the Formatted Zone. Therefore, the advantages of using a
property Graph in Neo4J overweighs the potential drawbacks, making it an optimal choice for
our project.

4 Analytical Zone: Recommender System
In the BWave recommender system, we leverage a combination of cosine similarity between
embeddings and Jaccard similarity coefficient to provide enhanced friend recommendations,
bringing together the strengths of both approaches.

In terms of Accuracy, Jaccard similarity coefficient captures user preferences based on behavior
and collective patterns, while cosine similarity between embeddings captures semantic similari-
ties and incorporates additional information, enabling the system to identify connections beyond
explicit preferences. This combination can result in more accurate and personalized friend rec-
ommendations by considering both explicit and implicit user preferences. It can additionally
promote recommendation diversity since Jaccard similarity coefficient focuses on collective be-
havior ensuring that recommendations cover a wide range of user preferences, while embeddings
capture semantic similarities and can identify niche or specific interests.

Data sparsity is a common challenge in recommender systems, especially when the number

4



BWave - Joint Project

of interactions is limited and can be a challenge at early stages, however, the combination of
Jaccard similarity coefficient and cosine similarity between embeddings can further reduce this
impact. The former can leverage the behavior of similar users to fill data gaps and generate
relevant recommendations while the later can also handle sparse data by incorporating addi-
tional information and capturing implicit preferences. Together, these approaches can improve
recommendation quality even when data is sparse.

Additionally, although we are mitigating this issue by retrieving users posts to get more infor-
mation about their preferences, the integration of cosine similarity between embeddings allows
BWave to handle the cold-start problem more effectively. When there is limited interaction data
for new users or items, embeddings can leverage available attributes, metadata, or contextual
information to generate initial representations. This enables the system to provide meaningful
recommendations from the start, even for users or items with sparse data.

5 Streaming
The streaming component of our project plays a critical role in processing and analyzing data in
real-time. In this section, we will discuss the key elements of our streaming infrastructure, in-
cluding the use of Kafka and the implementation of the Count-Min Sketch (CMS) data structure
with a priority queue.

Figure 2: BWave Chatbot Main Process

5.1 Kafka
In our project, the decision to use Kafka as part of our streaming infrastructure is driven by
several key advantages and considerations. Firstly, Kafka enables real-time data processing
by providing low-latency message delivery, which ensures that data is processed as soon as it
arrives in the system, allowing us to perform real-time analytics, monitoring, and decision-
making. Secondly, Kafka provides built-in fault tolerance through data replication, ensuring

5



BWave - Joint Project 5.2 Top 3 elements per Category

data reliability and preventing data loss, which is essential for maintaining the integrity of our
streaming pipeline. Thirdly, Kafka is designed to handle high volumes of data and can scale
horizontally by adding more brokers to distribute the load, which will be crucial for our project,
as we anticipate processing a large number of data.

5.2 Top 3 elements per Category
As new items entered the data stream, their corresponding counters in the CMS matrix were
incremented based on the calculated positions from the hash functions. It is important to
acknowledge that CMS is a probabilistic method for frequency counting in data streams, which
means there is a possibility of overestimating the true frequency of an item and the accuracy
of this approach can be affected by a large number of low-frequency items, leading to hash
collisions within the CMS. To address this, we made a deliberate decision to prioritize including
potentially non-trending topics in our top-3 list rather than omitting a potentially trending
topic.

While the CMS allowed us to estimate item frequencies, it did not inherently provide item
rankings. Therefore, we maintained a priority queue that was updated whenever an item’s
frequency was modified in the CMS. When the priority queue contained fewer than 3 items,
the new item was directly added. However, if the queue was already at its maximum capacity,
the frequency of the new item was compared with the minimum frequency in the queue. The
item with the minimum frequency was removed, ensuring that the priority queue always held
the top-3 items based on their frequencies.

This approach facilitated the estimation of item frequencies and real-time tracking of the top-3
items in each category, namely Movies, Food, and Music. Combining both techniques allowed
us to strike a balance between space efficiency and accuracy when handling large data streams.

Every time the tops are updated, the results are posted to a different Kafka topic, to which our
server listens to, to be able to broadcast them to all active users in real time.

6



BWave - Joint Project

6 References
1. Alberto Abello, Sergi Nadal. (2023) Big Data Management. Chapters 1 - 10.

2. Polikoff, I. (2020, August 19). Knowledge Graphs vs. Property Graphs – Part I. Retrieved
from https://tdan.com/knowledge-graphs-vs-property-graphs-part-1/27140

3. Polikoff, I. (2020, September 16). Knowledge Graphs vs. Property Graphs – Part II.
Retrieved from https://tdan.com/knowledge-graphs-vs-property-graphs-part-ii/
27271

4. Foote, K. D. (2022, January 5). Property Graphs vs. Knowledge Graphs. Retrieved from
https://tdan.com/knowledge-graphs-vs-property-graphs-part-ii/27271

5. Singh Walia, M. (2022, January 28). A Comprehensive Guide on Neo4j. Retrieved from
https://www.analyticsvidhya.com/blog/2022/01/a-comprehensive-guide-on-neo4j-
graph-database/

6. Neo4j. (n.d.). Top Ten Reasons for Choosing Neo4j. Retrieved from https://neo4j.
com/top-ten-reasons/

7. Neo4j. (n.d.). Why Graph Databases? Retrieved from https://neo4j.com/why-graph-
databases/

8. Javed, M. (2020, November 4). Using Cosine Similarity to Build a Movie Recommendation
System. Retrieved from https://towardsdatascience.com/using-cosine-similarity-
to-build-a-movie-recommendation-system-ae7f20842599

9. Elkhattam, A. (n.d.). Building a Content-based Recommender using a Cosine-Similarity
Algorithm. Retrieved from https://a-elkhattam.medium.com/imdb-movie-recommendation-
chatbot-942f84dfa0dc

10. Meor Amer. (2022, June 21). Article Recommender with Text Embedding, Classification,
and Extraction. Retrieved from https://txt.cohere.com/article-recommender/

11. Maretha, A. (2022, July 31). Item Recommendation using Jaccard Coefficient. Retrieved
from https://amaretha.medium.com/item-recommendation-using-jaccard-coefficient-
f74df5c255b3

12. Putty, M. (n.d.). Measuring similarity in recommendation systems. Retrieved from https:
//levelup.gitconnected.com/measuring-similarity-in-recommendation-systems-
8f2aa8ad1f44

13. Nandi, M. (2017, July 14). Recommender Systems through Collaborative Filtering. Re-
trieved from https://www.dominodatalab.com/blog/recommender-systems-collaborative-
filtering

14. Ayub, M., Ghazanfar, M. A., Maqsood, M., & Saleem, A. (n.d.). A Jaccard base similarity
measure to improve performance of CF based recommender systems. IEEE. Retrieved from
https://ieeexplore.ieee.org/document/8343073

15. Bag, S., Kumar, S. K., & Tiwari, M. K. (2019). An efficient recommendation generation
using relevant Jaccard similarity. Information Sciences, 475, 228-247. Retrieved from

7

https://tdan.com/knowledge-graphs-vs-property-graphs-part-1/27140
https://tdan.com/knowledge-graphs-vs-property-graphs-part-ii/27271
https://tdan.com/knowledge-graphs-vs-property-graphs-part-ii/27271
https://tdan.com/knowledge-graphs-vs-property-graphs-part-ii/27271
https://www.analyticsvidhya.com/blog/2022/01/a-comprehensive-guide-on-neo4j-graph-database/
https://www.analyticsvidhya.com/blog/2022/01/a-comprehensive-guide-on-neo4j-graph-database/
https://neo4j.com/top-ten-reasons/
https://neo4j.com/top-ten-reasons/
https://neo4j.com/why-graph-databases/
https://neo4j.com/why-graph-databases/
https://towardsdatascience.com/using-cosine-similarity-to-build-a-movie-recommendation-system-ae7f20842599
https://towardsdatascience.com/using-cosine-similarity-to-build-a-movie-recommendation-system-ae7f20842599
https://a-elkhattam.medium.com/imdb-movie-recommendation-chatbot-942f84dfa0dc
https://a-elkhattam.medium.com/imdb-movie-recommendation-chatbot-942f84dfa0dc
https://txt.cohere.com/article-recommender/
https://amaretha.medium.com/item-recommendation-using-jaccard-coefficient-f74df5c255b3
https://amaretha.medium.com/item-recommendation-using-jaccard-coefficient-f74df5c255b3
https://levelup.gitconnected.com/measuring-similarity-in-recommendation-systems-8f2aa8ad1f44
https://levelup.gitconnected.com/measuring-similarity-in-recommendation-systems-8f2aa8ad1f44
https://levelup.gitconnected.com/measuring-similarity-in-recommendation-systems-8f2aa8ad1f44
https://www.dominodatalab.com/blog/recommender-systems-collaborative-filtering
https://www.dominodatalab.com/blog/recommender-systems-collaborative-filtering
https://ieeexplore.ieee.org/document/8343073


BWave - Joint Project

https://doi.org/10.1016/j.ins.2019.01.023

16. Fkih, F. (2022, October). Similarity measures for Collaborative Filtering-based Recom-
mender Systems: Review and experimental comparison. Retrieved from https://doi.
org/10.1016/j.jksuci.2021.09.014

17. Wang, Y., Deng, J., Gao, J.,
& Zhang, P. (2017, August). A Hybrid User Similarity Model for Collaborative Filtering.
Retrieved from https://doi.org/10.1016/j.ins.2017.08.008

18. Apache Kafka. (n.d.). Kafka Streams. Retrieved from https://kafka.apache.org/
documentation/streams/

19. Babatunde, A. (2022, November 30). Why Spark Structured Streaming Could Be The Best
Choice. Retrieved from https://www.netguru.com/blog/spark-streaming#:~:text=
Apache%20Spark%20Structured%20Streaming%20is,with%20virtually%20no%20code%20changes.

8

https://doi.org/10.1016/j.ins.2019.01.023
https://doi.org/10.1016/j.jksuci.2021.09.014
https://doi.org/10.1016/j.jksuci.2021.09.014
https://doi.org/10.1016/j.ins.2017.08.008
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://www.netguru.com/blog/spark-streaming#:~:text=Apache%20Spark%20Structured%20Streaming%20is,with%20virtually%20no%20code%20changes.
https://www.netguru.com/blog/spark-streaming#:~:text=Apache%20Spark%20Structured%20Streaming%20is,with%20virtually%20no%20code%20changes.


BWave - Joint Project

Appendix A Running example
In Figure 3, one can observe the final outcome of our proof of concept. In this image, we can
see how an user named Jose interacts with the bot, and is able to see the topics that people are
liking the most, regarding food, music and movies. Whenever he wants, he can press the buttons
to search for friends, getting recommendations based on what the system has learnt about him.

Figure 3: Full running example

9


	Introduction
	Formatted Zone
	Exploitation Zone
	Analytical Zone: Recommender System
	Streaming
	Kafka
	Top 3 elements per Category

	References
	Running example

